Восстановление фазового пространства

Один из лучших Форекс-брокеров – компания «RoboForex». ECN-счета с депозитом от $10. Возможность торговать акциями Amazon, Facebook, Siemens и еще более чем 12.000 активов через платформу «R Trader» с депозитом от $100. Разрешены скальпинг, пипсовка, любые советники и стратегии. Имеется бесплатный конструктор торговых стратегий.

В главе 11 фазовое пространство системы было исходным началом для всех измерений. Чтобы сконструировать истинное фазовое пространство, необходимо знать все переменные, релевантные системе. В реальной жизни мы обычно начинаем с одной известной динамической переменной.

Паккард и др. (Packard et al., 1980) обрисовали простой метод, развитый Дэвидом Рюэлем для восстановления фазового пространства по одной динамической переменной. Этот метод наполняет другие размерности посредством запаздывающих значений одной наблюдаемой переменной. Предположим, что временной ряд А из таблицы 12.1 есть исходный временной ряд. Временной ряд В есть та же реализация с отставанием на один период и временной ряд С – она же с отставанием на два периода.

Паккард дает математическое объяснение. Я это сделаю на интуитивном уровне. Нелинейные динамические системы являются внутренне зависимыми симультантными системами. Текущие величины каждой переменной есть трансформации прошлых величин. Напомним уравнения (11.1) для отображения Хенона:

Как Xt+1 так и Yt+1 содержат в себе предыдущие величины X и Y. Показатель степени делает систему нелинейной, а симультантная природа уравнений делает ее динамической.


Знаете ли Вы, что: через компанию «Just2Trade» Вы можете получить прямой доступ к мировому рынку облигаций (доступны US Treasuries, российские еврооблигации, облигации Газпрома и многие другие) с низкими комиссиями и минимальным депозитом – от $3 тыс.


Рассмотрим электронную таблицу, созданную в гл. 11 для аттрактора Хенона. (Если вы ее стерли – восстановите.) В столбец С поместим величины X, сдвинутые на одну итерацию (в ячейку С1 поместим величину из ячейки А2), и копируем их вниз до конца столбца а. Величины в столбцах В и С будут различны. На графике аттрактора Хенона в координатах X, Y поменяем местами столбец В со столбцом С, содержащим величины Y точечного графика. Как показано на рис. 12.1, результат этой операции есть копия отображения Хенона, повернутая на 90°. Если вам даны только величины в столбце А без указания уравнений (11.1) или того, что это именно отображение Хенона, вы все равно сможете получить аттрактор Хенона. Рюэль доказал математически, что такое восстановленное фазовое пространство имеет такую же фрактальную размерность и спектр показателей Ляпунова, как и «настоящее» фазовое пространство двух переменных. Восстановленное фазовое пространство может быть рассчитано просто по наблюдениям, в отсутствие уравнений движения.

Мы узнали, что аттрактор Хенона является двумерным, поскольку нам были известны уравнения движения. Имея одни только наблюдения и кроме них никакой информации, мы намного более ограниченны. Как можно заранее узнать, сколько размерностей надо использовать? Это невозможно. Как можно установить подходящий временной лаг? Непонятно. Мы должны провести эксперименты, зафиксировать данные и восстановить фазовое пространство.

Прежде всего, размерность аттрактора не изменяется, так как мы помещаем его в размерность более высокую, чем его собственная. Плоскость, выстроенная в трехмерном пространстве, остается двумерным объектом. Линия, выстроенная в двумерном или трехмерном пространстве, остается одномерной. Аттрактор, если мы действительно имеем дело с нелинейной динамической системой, сохраняет свою размерность при увеличении размерности вложения сверх фрактальной размерности. Почему? Потому что его точки коррелируют и остаются сгруппированными вместе безотносительно к размерности. Применительно к действительно случайному блужданию точки не коррелируют и заполняют любое пространство вложения, поскольку они перемещаются случайным образом.

Взглянем на случайный временной ряд как на газ и на коррелированный временной ряд как на твердое тело. Газ, помещенный в замкнутое пространство, растекается до тех пор, пока не заполнит весь объем. Отдельные молекулы в газе не связаны, они свободно перемещаются в пространстве. Положения молекул в твердом теле фиксированны, или скоррелированны, занимаемый ими объем не изменяется. Подобным же образом случайный временной ряд заполняет размерность вложения, так как его точки не скоррелированны. Ряд с долговременными корреляциями связан в единое целое подобно твердому телу и будет сохранять свою форму независимо от того, в пространство какой размерности он будет помещен, поскольку размерность вложения выше размерности ряда.

Поскольку мы восстанавливаем аттрактор в пространстве Размерности более высокой, чем «истинная» размерность аттрактора, проблем с размерностью не возникает.

Подходящий временной лаг также представляет собой относительно простую проблему. Уолф и др. (Wolf et all., 1985) нашли, что хорошая оценка может быть получена из соотношения:

где т – размерность вложения, t – временной лаг, Q – значение орбитального периода.

Временной лаг есть отношение значения орбитального периода к размерности вложения, или процент орбиты внутри каждой размерности. Это отношение обеспечивает неизменность орбитального периода в высшей размерности. Например, если период составляет 48 итераций, то в двумерном пространстве было бы использовано 24 итерации с двухточечным лагом, а в трехмерном пространстве – 16 наблюдений с трехточечным лагом. В каждом случае для анализа используется одна 48-месячная орбита, при этом однажды пересекаются все размерности реконструированного пространства.

Следующий вопрос: как мы можем узнать значение орбитального периода? Методом нормированного размаха (R/S- анализ) было показано в части 2, как оценить период временного ряда в качестве величины времени, по достижении которого наблюдения становятся некоррелированны. Если значение орбитального периода не обнаруживается легко с помощью R/S-анализа, мы не имеем, по всей вероятности, достаточно данных.

Восстановление фазового пространства становится относительно легким. Важно помнить, однако, что приведенное выше правило есть «правило большого пальца», но отнюдь не закон. В экспериментах можно попытаться изменять это правило, наблюдая что происходит. Используя восстановленное фазовое пространство, мы можем вычислить фрактальную размерность и измерить чувствительность зависимости от начальных условий.

Содержание Далее

Перейти на Главную страницу сайта